

Making IoT happen, together.

Modbus RTU Client

EasyEdge Protocol Engine Profile

Overview

Modbus RTU is an open serial protocol derived from the Master/Slave architecture that was originally developed by

Modicon (now Schneider Electric). It is a widely accepted serial-level protocol due to its ease of use and reliability. Modbus

RTU is commonly used within Building Management Systems (BMS) and Industrial Automation Systems (IAS).

Modbus RTU messages are a simple 16-bit structure with a CRC (Cyclic-Redundancy Check). The simplicity of these

messages is to guarantee reliability. Due to this simplicity, the basic 16-bit Modbus RTU register structure can be used to

pack in floating-point, tables, ASCII text, queues, and other unrelated data. This protocol primarily uses an RS-232 or RS-

485 serial interface for communications.

EasyEdge Modbus RTU Engine allows you to connect devices using the Modbus protocol. EasyEdge Modbus RTU Engine

operates as a Modbus master and implements two-way communication. It can connect to multiple devices even with

different communication parameters.

Features

• Supports multiple equipment via RTU;

• Supports files descriptor (.pdf or .csv) parser (JiT Connector);

• Supports adjustable address base (0 or 1);

• Supports full address range (0-65535);

• Supports HEX addressing (0-FFFF);

• Supports word and byte swapping (byte order):
o MSW: Most significant word first;
o LSW: Least significant word first;

o MSB: Most significant byte first;
o LSB: Least significant byte first.

• Supports equipment slave id full range (1-247);

• Supports broadcast messages using slave id 0;

• Supported functions:
o read coil status (01);
o read input status (02);
o read holding registers (03);

o read input registers (04);
o force single coil (05);
o preset single register (06);

o force multiple coils (15);
o preset multiple registers (16);
o Exceptions;

• Supported data types:
o Boolean;
o Integer8;
o Integer16;
o Integer32;

o Integer64;
o Unsigned8;
o Unsigned16;
o Unsigned32;

o Unsigned64;
o Floating Point 32;
o Floating Point 64;
o String;

• Support for reading/writing data that spans multiple contiguous registers with different sizes and byte order (for

example interpreting the value of four contiguous registers as a 64-bit Floating Point);

• Adjustable polling request time per equipment;

• Adjustable minimum request interval per register;

• Adjustable pooling request timeout;

• Supports automatic black list, avoiding requests for disconnected equipment;

• Supports minimum channel silence, forcing a time between every request on the serial bus;

• Support for least significant word (LSW) and most significant word (MSW);

• Besides LSW/MSW, it allows big-endian/little-endian swapping on all scalar data types;

• Allows different communication options (baud rate, byte size, parity and stop bits) on the same serial bus;

• Inconsistent data canceling, suppressing Modbus vulnerability for out-of-time and out-of-order replies;

• Allows Ethernet encapsulation providing communication with serial devices over Modbus TCP/IP servers.

